
How to…
Write applications using Visual Basic

Last month, I finished explaining some of the properties, methods and events that most
VB controls have in common, and we started to write our “Doodler” program to put what
you’ve learnt into practice. Continuing from last month, you should have already created
the user interface (the form and its controls) and now we’re ready to start adding the
logic behind them.

Keep it colourful

We’ll begin by adding the names of some colours into the lstColours listbox. The
ListBox control shares a great deal in common with the ComboBox, which we’ve met
earlier in this series. Just as we’ve used the AddItem method of the combo box to add
choices to its pop-down list, we’ll use the AddItem of the list box to add some colours to
its list. Don’t worry about the unfamiliar terms, I’ll explain them in a moment. Enter the
following code into the Form_Load event of frmDoodler:

With lstColours
 .AddItem "Black"
 .ItemData(.NewIndex) = RGB(0, 0, 0)
 .AddItem "Red"
 .ItemData(.NewIndex) = RGB(255, 0, 0)
 .AddItem "Green"
 .ItemData(.NewIndex) = RGB(0, 255, 0)
 .AddItem "Blue"
 .ItemData(.NewIndex) = RGB(0, 0, 255)
 .AddItem "Yellow"
 .ItemData(.NewIndex) = RGB(255, 255, 0)
 .AddItem "Cyan"
 .ItemData(.NewIndex) = RGB(0, 255, 255)
 .AddItem "Magenta"
 .ItemData(.NewIndex) = RGB(255, 0, 255)
 .AddItem "White"
 .ItemData(.NewIndex) = RGB(255, 255, 255)

 .ListIndex = 0
End With

optShape(0).Value = True

The last time we used the AddItem method, we looped around the elements of an array
adding each item in turn. However, we’re adding the items individually in this case since
we’re not using an array. Notice the use of the With keyword – this provides a
convenient way to refer to the properties and methods of a control without having to keep

specifying its name. Once VB has encountered a With keyword, it assumes that any
references to methods and properties that aren’t prefixed with the name of a control are
referring to the control that you mentioned in the preceding With statement. Once you’ve
finished using this feature, you need to disable it using a corresponding End With as I
have done. It would be just as valid to enter

lstColours.AddItem "Black"
lstColours.ItemData(.NewIndex) = RGB(0, 0, 0)
lstColours.AddItem "Red"
lstColours.ItemData(.NewIndex) = RGB(255, 0, 0)
...
.. (and so on)

omitting the With block altogether. However, I recommend that you use With wherever
possible; not only is it less typing, but it’s also marginally faster when VB gets round to
executing your program.

Doing colours the Windows Way

If you have programmed using a Commodore 64 or Sinclair Spectrum before, you might
be used to having a fixed colour palette, for example, colour 0 is black, colour 1 is white,
colour 2 is red and so on. No such limitation exists on the PC; you are free to “invent”
your own colours as you see fit. All you need to do is to state the intensity of red, green,
and blue that you want in the colour, and it is made for you.

You refer to how much red, green and blue should be used by specifying a number from
0 to 255, where 0 is the least intensity of that colour and 255 is the greatest intensity of
that colour. For example, a colour containing a red value of 255, a green value of 0 and a
blue value of 255 would produce magenta since red mixed with blue makes magenta.
Setting all the values to 0 produces black and setting them all to 255 produces white.

How do we use this in Visual Basic? Well, colours in VB are represented using a single
32-bit number rather than the three separate values for the red, green and blue
components of a colour. Visual Basic provides the RGB function, which returns the
appropriate 32-bit value when given the various intensities of Red, Green and Blue
respectively. Using the example of magenta used earlier, we could specify
RGB(255,0,255) which would return a value of 16711935, which to VB, means magenta.

You can also use constants rather than the RGB function to specify colour values if you
want, although the RGB function is more flexible since you can specify colours that have
no constant equivalent. See the “Constants” box elsewhere in this article for an
explanation as to what a constant is.

One point whilst we’re on the subject of colour – the colours on your screen may not
exactly match what you ask for. This is dependent on the display driver and colour depth
you use. To accurately reproduce the entire spectrum of colours, configure your display

for 16-bit (65536 colours), or preferably, 24-bit colour (16777216 colours) via the
Settings tab of the Display applet in the Control Panel.

Now we know how to specify colours, we just need a way to associate them with their
names in the ListBox, which brings me to the next subject…

Hidden Agenda

A new property has crept into the Form_Load code – ItemData. Every item in a ListBox
(or ComboBox, for that matter) can have a hidden number associated with it – this
number is accessed by the ItemData property. As luck would have it, this number is a
32-bit integral value, which makes it ideal for storing the RGB value of each colour.
Therefore, when we add the description of the colour using the AddItem method, we
immediately follow this by setting the ItemData property of the list item we’ve just added
to reflect the RGB value of the colour it represents. Notice the use of the NewIndex
property to get the list index of the item that was most recently added to the ListBox.

Finally, we set which items of the user interface will be initially selected when the
program is started. We make the first item in the ListBox the default selection by setting
the listbox’s ListIndex property to 0 (don’t forget that list items are numbered from 0, not
1). Then, we select the first OptionButton in the control array optShape to be the initially
selected control within the array by setting its Value property to True. The Value
property of an OptionButton returns True if it is selected or False if it is not. Please note
that the Value property is the default property of an OptionButton so it could have been
omitted. I’ve left it in for clarity in this case although you can remove it if you wish.

Drawing on a Picture(Box)

All our drawing will be taking place in the PictureBox we’ve called picDrawingArea.
Why a PictureBox? Well, the PictureBox control is the only control that lets you draw
onto it directly. We could draw directly onto our form, frmDoodler instead but then,
we’d have to write some code to stop the user from drawing onto areas that we didn’t
intend, for example underneath the list of colours. Since the PictureBox provides a
visible boundary to show the user whereabouts the drawing can take place, and it also
supports being drawn onto directly, it is the perfect choice for our task.

Forgetful VB?

There’s one more catch to drawing directly onto a control – by default, VB doesn’t
remember what has been drawn onto a control. If anything causes VB to redraw the
PictureBox, for example placing another window over the top of it and then moving that
window out of the way again, our work of art will be erased. This isn’t VB’s fault – it’s

the way that Windows works, and many other graphical operating systems along with it
for that matter. Behind the scenes, when one window overlaps another, the bit that is
covered up isn’t remembered. When the user moves the topmost window elsewhere and
exposes the region of the underlying window was previously covered, Windows asks the
underlying window to redraw its newly “exposed” region. Since we’re not going to be
storing a separate copy of what the user draws, we won’t be able to do this because we
won’t know what was there previously. Fortunately, VB provides the AutoRedraw
property – this tells VB to keep a copy of whatever we draw onto a control. If we set this
property on our PictureBox to True, VB will remember what was there previously and do
all the necessary redrawing for us.

In Closing

That’s all for this month – as usual, you can find the project files that accompany this
tutorial on the cover disc. Next month, we’ll continue with the Doodler program and add
the code that performs the actual drawing itself.

Good luck,
Nick.

Nicholas Scott is a freelance columnist who currently works for MIS Computer Services
in Northwich. Nick can be contacted via email at nicks@miscs.com.

Those missing bits…

The techies amongst you might wonder why I said that colours are represented by a 32-
bit value. After all, colours are represented by three 8-bit values and 8+8+8 makes 24
bits, not 32. The answer is, that Windows itself uses the other 8 bits of the value to assist
it in representing the so-called “System Colours”. System colours are used to draw
things which have no fixed colour such as the window frames, the desktop background
colour and so on. I say no fixed colour, because you can define which colours are used
for drawing these things via the Appearance tab in the Display applet of the Control
Panel. If you refer to the system colours in your program, you’ll get the appropriate
colours from the control panel instead. To see a list of these system colours, click a VB
form, click its BackColor property and then click the combo box that appears. Choose a
colour and then look at the hexadecimal value that VB puts into the BackColor property.
If you wanted to use a system colour, you’d have to specify this hexadecimal equivalent
directly since the RGB function only returns 24-bit values. Or better still, use a constant
– see the box on constants elsewhere in this article for details.

Constants

Constants are like variables, except that their values can’t be changed, i.e. they’re
constant. Constants are useful because you can refer to certain “magic” values using
constants instead, making your programs more readable. For example, the value
16711935 means “magenta” to VB when used as the value for a colour. However, Visual
Basic already has a constant for this called vbMagenta, so you could use this instead of
the less meaningful 16711935. VB has a large number of pre-defined constants for your
use, for example vbRed, vbYellow and so on. The so-called “System Colours” also have
constant equivalents, for example, vbDesktop, which represents the colour of your
desktop. Refer to the box entitled “Those missing bits…” elsewhere in this article for an
explanation of system colours.

VB provides constants for many other things as well as colours, for example, Window
States, which reflect whether a window is maximised or minimised and so on. In
addition, you can define your own constants if you wish – defining your own constants
will be covered in a future article

(ED: The filename for this image is “ColourGradient.bmp”)

0 255
Red

0

255

G
re

en

Varying the levels of red,
green and blue can produce
the entire spectrum of
colours. In this example,
only red and green have
been used, blue has been
omitted. The red intensity
has been increased towards
the right-hand side of the
square and the green
intensity has been increased
towards the bottom of the
square.

Figure 1 – Sample colours using only red and green

(ED: The filename for this image is ItemData.bmp)

The ItemData property lets you associate a
number with each item in a ListBox. The
values you use are never displayed; they are
shown here so that you can see what is
happening behind the scenes. The values used
in this case are the 32-bit RGB values of the
colours they represent.

Figure 2 – The ItemData property

	In Closing

